147 research outputs found

    Developing image analysis methods for digital pathology

    Get PDF
    The potential to use quantitative image analysis and artificial intelligence is one of the driving forces behind digital pathology. However, despite novel image analysis methods for pathology being described across many publications, few become widely adopted and many are not applied in more than a single study. The explanation is often straightforward: software implementing the method is simply not available, or is too complex, incomplete, or dataset‐dependent for others to use. The result is a disconnect between what seems already possible in digital pathology based upon the literature, and what actually is possible for anyone wishing to apply it using currently available software. This review begins by introducing the main approaches and techniques involved in analysing pathology images. I then examine the practical challenges inherent in taking algorithms beyond proof‐of‐concept, from both a user and developer perspective. I describe the need for a collaborative and multidisciplinary approach to developing and validating meaningful new algorithms, and argue that openness, implementation, and usability deserve more attention among digital pathology researchers. The review ends with a discussion about how digital pathology could benefit from interacting with and learning from the wider bioimage analysis community, particularly with regard to sharing data, software, and ideas. © 2022 The Author. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Experiences of open science & software

    Get PDF
    Open source image analysis software plays a crucial role in biological research. For more than 20 years biologists have relied upon ImageJ to analyze microscopy data, and an ecosystem of open bioimage analysis tools (including Fiji, CellProfiler, ilastik, KNIME, icy) has since grown up to help researchers deal with the wide diversity of data across the field. However, until recently there was no established open source platform designed to handle whole slide images. These are ultra-large scans of entire glass slides (typically up to 50 GB per 2D image), the size and complexity of which pose unique computational challenges. Whole slide images are already the mainstay of digital pathology and are becoming increasingly common in other areas of biomedical research. I created QuPath to address this need (https://qupath.github.io), with the aim of making the analysis of complex tissue images containing millions of cells both fast and intuitive. Since its release less than 2 years ago, QuPath has becom

    The ventral habenulae of zebrafish develop in prosomere 2 dependent on Tcf7l2 function

    Get PDF
    BACKGROUND: The conserved habenular neural circuit relays cognitive information from the forebrain into the ventral mid- and hindbrain. In zebrafish, the bilaterally formed habenulae in the dorsal diencephalon are made up of the asymmetric dorsal and symmetric ventral habenular nuclei, which are homologous to the medial and lateral nuclei respectively, in mammals. These structures have been implicated in various behaviors related to the serotonergic/dopaminergic neurotransmitter system. The dorsal habenulae develop adjacent to the medially positioned pineal complex. Their precursors differentiate into two main neuronal subpopulations which differ in size across brain hemispheres as signals from left-sided parapineal cells influence their differentiation program. Unlike the dorsal habenulae and despite their importance, the ventral habenulae have been poorly studied. It is not known which genetic programs underlie their development and why they are formed symmetrically, unlike the dorsal habenulae. A main reason for this lack of knowledge is that the vHb origin has remained elusive to date. RESULTS: To address these questions, we applied long-term 2-photon microscopy time-lapse analysis of habenular neural circuit development combined with depth color coding in a transgenic line, labeling all main components of the network. Additional laser ablations and cell tracking experiments using the photoconvertible PSmOrange system in GFP transgenic fish show that the ventral habenulae develop in prosomere 2, posterior and lateral to the dorsal habenulae in the dorsal thalamus. Mutant analysis demonstrates that the ventral habenular nuclei only develop in the presence of functional Tcf7l2, a downstream modulator of the Wnt signaling cascade. Consistently, photoconverted thalamic tcf7l2(exl/exl) mutant cells do not contribute to habenula formation. CONCLUSIONS: We show in vivo that dorsal and ventral habenulae develop in different regions of prosomere 2. In the process of ventral habenula formation, functional tcf7l2 gene activity is required and in its absence, ventral habenular neurons do not develop. Influenced by signals from parapineal cells, dorsal habenular neurons differentiate at a time at which ventral habenular cells are still on their way towards their final destination. Thus, our finding may provide a simple explanation as to why only neuronal populations of the dorsal habenulae differ in size across brain hemispheres

    cudaMap: a GPU accelerated program for gene expression connectivity mapping

    Get PDF
    BACKGROUND: Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. RESULTS: cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. CONCLUSION: Emerging ‘omics’ technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap

    GPs’ understanding and practice of safety netting for potential cancer presentations : a qualitative study in primary care

    Get PDF
    Background Safety netting is a diagnostic strategy used in UK primary care to ensure patients are monitored until their symptoms or signs are explained. Despite being recommended in cancer diagnosis guidelines, little evidence exists about which components are effective and feasible in modern-day primary care. Aim To understand the reality of safety netting for cancer in contemporary primary care. Design and setting A qualitative study of GPs in Oxfordshire primary care. Method In-depth interviews with a purposive sample of 25 qualified GPs were undertaken. Interviews were recorded and transcribed verbatim, and analysed thematically using constant comparison. Results GPs revealed uncertainty about which aspects of clinical practice are considered safety netting. They use bespoke personal strategies, often developed from past mistakes, without knowledge of their colleagues’ practice. Safety netting varied according to the perceived risk of cancer, the perceived reliability of each patient to follow advice, GP working patterns, and time pressures. Increasing workload, short appointments, and a reluctance to overburden hospital systems or create unnecessary patient anxiety have together led to a strategy of selective active follow-up of patients perceived to be at higher risk of cancer or less able to act autonomously. This left patients with low-risk-but-not-no-risk symptoms of cancer with less robust or absent safety netting. Conclusion GPs would benefit from clearer guidance on which aspects of clinical practice contribute to effective safety netting for cancer. Practice systems that enable active follow-up of patients with low-risk-but-not-no-risk symptoms, which could represent malignancy, could reduce delays in cancer diagnosis without increasing GP workload

    A Simulation Framework to Investigate in vitro Viral Infection Dynamics

    Get PDF
    AbstractVirus infection is a complex biological phenomenon for which in vitro experiments provide a uniquely concise view where data is often obtained from a single population of cells, under controlled environmental conditions. Nonetheless, data interpretation and real understanding of viral dynamics is still hampered by the sheer complexity of the various intertwined spatio-temporal processes. In this paper we present a tool to address these issues: a cellular automata model describing critical aspects of in vitro viral infections taking into account spatial characteristics of virus spreading within a culture well. The aim of the model is to understand the key mechanisms of SARS-CoV infection dynamics during the first 24hours post infection. We interrogate the model using a Latin Hypercube sensitivity analysis to identify which mechanisms are critical to the observed infection of host cells and the release of measured virus particles

    Using the R Package Spatstat to Assess Inhibitory Effects of Microregional Hypoxia on the Infiltration of Cancers of the Head and Neck Region by Cytotoxic T Lymphocytes

    Get PDF
    (1) Background: The immune system has physiological antitumor activity, which is partially mediated by cytotoxic T lymphocytes (CTL). Tumor hypoxia, which is highly prevalent in cancers of the head and neck region, has been hypothesized to inhibit the infiltration of tumors by CTL. In situ data validating this concept have so far been based solely upon the visual assessment of the distribution of CTL. Here, we have established a set of spatial statistical tools to address this problem mathematically and tested their performance. (2) Patients and Methods: We have analyzed regions of interest (ROI) of 22 specimens of cancers of the head and neck region after 4-plex immunofluorescence staining and whole-slide scanning. Single cell-based segmentation was carried out in QuPath. Specimens were analyzed with the endpoints clustering and interactions between CTL, normoxic, and hypoxic tumor areas, both visually and using spatial statistical tools implemented in the R package Spatstat. (3) Results: Visual assessment suggested clustering of CTL in all instances. The visual analysis also suggested an inhibitory effect between hypoxic tumor areas and CTL in a minority of the whole-slide scans (9 of 22, 41%). Conversely, the objective mathematical analysis in Spatstat demonstrated statistically significant inhibitory interactions between hypoxia and CTL accumulation in a substantially higher number of specimens (16 of 22, 73%). It showed a similar trend in all but one of the remaining samples. (4) Conclusion: Our findings provide non-obvious but statistically rigorous evidence of inhibition of CTL infiltration into hypoxic tumor subregions of cancers of the head and neck. Importantly, these shielded sites may be the origin of tumor recurrences. We provide the methodology for the transfer of our statistical approach to similar questions. We discuss why versions of the Kcross and pcf.cross functions may be the methods of choice among the repertoire of statistical tests in Spatstat for this type of analysis
    • 

    corecore